位置:黑龙江新闻网 > 文化遗产 > 正文 >

CIIS2018演讲实录丨哈尔滨工业大学车万翔:任务型对话系统研究进展

2018年12月06日 08:26来源:未知手机版

破酥包,耐克官网,重生农家幺妹,美国nasa,重生之全能天才,巫溪中学

原标题:CIIS2018演讲实录丨哈尔滨工业大学车万翔:任务型对话系统研究进展

由中国人工智能学会主办,广州易间网络科技有限公司承办的2018第八届中国智能产业高峰论坛11 月17-18日在成都完美收官,论坛在两天的会议里带来了多场精彩报告。

此次小编为大家整理的是来自哈尔滨工业大学车万翔教授主题为《任务型对话系统研究进展》的精彩演讲。

车万翔

哈尔滨工业大学教授

以下内容根据速记进行整理

经过车万翔老师本人校对

大家好,我叫车万翔,来自哈尔滨工业大学,今天很高兴和大家分享任务型对话系统的一些技术现状以及我们的一些研究进展。对话系统最早可以追述到图灵测试,后来并没有太大的进展,直到苹果公司的SIRI开始才有大规模的应用,之后谷歌、微软、百度等公司相继开发了各自的对话机器人。

我们将对话系统分成四个主要的功能:第一个是任务型对话系统,也可以认为其他都是非任务型对话系统,又可以进一步划分为聊天类、知识问答类,以及推荐类,这几个类型的机器人我们研究中心都在做。我今天主要介绍任务型的对话系统。

任务型的对话机器人有很多用处,如智能汽车控制、个人助理等。任务型对话系统主要构成包括三模块:第一个模块为自然语言理解(这个名字不是特别好,因为我们做自然语言处理整个大方向也叫自然语音理解,这个名字是在人机对话领域约定俗成的,也可以叫口语语言理解),它主要实现两个功能,一个是意图识别,一个是语义槽填充。比如“请帮我订一张去北京的机票”,意图是订机票,语义槽为“到达地=北京”。

第二模块为对话管理,又包括对话状态跟踪和对话策略优化。对话状态一般表示为语义槽和值的列表,如有出发地、到达地等。通过自然语言理解,我们知道到达地是北京,出发地和出发时间仍然是空,这就是当前的对话状态。获得当前对话状态后,我们要进行策略优化,选择下一步采用什么样的策略,也叫动作。动作有很多种,我可以问出发时间,也可以问出发地。如此时可以寻问出发地。

第三部分为自然语言生成。在对话系统里面语言生成工作相对比较简单,通过写模板即可实现。比如要询问出发地,就直接问“请问你从哪里出发”,然后经过 TTS 系统给用户反馈。整个过程可以一直循环下去,随着每次提问的不同,对话状态也随之变化,然后采用不一样的回复策略。

下面介绍这几个模块的技术发展趋势。其中,意图分类可以看成是文本分类,而且是短文本分类问题。早期采用SVM等线性分类器,最近主要采用深度学习方法,比如CNN或者CNN-LSTM。有人说深度学习需要大数据,对话领域数据不多,为什么还采用深度学习技术呢?这主要归功于预训练模型,使得深度学习在只有较少数据的情况下,仍然可以取得比较好的效果。

语义槽填充是要识别句子中规定好的语义槽的值。可以看成序列标注问题,即标注出序列中每个词的标签,如出发地的开始或者出发地的继续等。传统的序列标准模型是CRF,现在双向LSTM之后还可以再加CRF模型。

对话管理负责识别出下一步采用什么动作。这个问题比较麻烦就是我们很难标注出数据,告诉对话系统每一步采用什么动作,因为很多时候没有标准答案。比如刚才那个例子,询问出发时间还是出发地都是合理的动作,只有对话全流程结束后才知道该步骤采取的动作是否合适。这是强化学习擅长解决的问题。早期对话管理的研究往往采用基于规则的方法,后来出现基于有指导,即标注每一步所谓的标准动作,目前研究主要集中在基于强化学习的方法,其中的奖励可以是对话轮数、任务完成情况等。

本文地址:http://www.hljold.org.cn/wenhuayichan/54924.html 转载请注明出处!

今日热点资讯